Connect with us


Bird Flu Can Jump To Mammals. Should We Worry?




An uncomfortable truth is that there is another influenza pandemic in humankind’s future. Whether it will be a relative of the lethal avian flu strain currently wreaking havoc in bird populations around the globe is anyone’s guess.

Because the virus, called H5N1, can be deadly to birds, mammals and people, researchers closely monitor reports of new cases. Worryingly, a new variant of H5N1 that emerged in 2020 has not only spread farther than ever before among birds, but has also spilled over into other animals, raising the specter of a human outbreak (SN: 12/12/22).

The variant was linked to a seal die-off in Maine last summer. In October, there was an H5N1 outbreak on a mink farm in Spain, researchers reported in January in Eurosurveillance. (It’s unclear how the mink were exposed, but the animals were fed poultry by-products.) Sea lions off the coast of Peru and wild bears, foxes and skunks, which prey upon or scavenge birds, in the United States and Europe have also tested positive for the virus.

Globally, hundreds of millions of domestic poultry have been culled or died from the new variant. It’s also likely that millions of wild birds have died, though few governmental agencies are counting, says Michelle Wille a viral ecologist at the University of Sydney who studies avian influenza. “This virus is catastrophic for bird populations.”

A handful of human cases have also been reported, though there’s no evidence that the virus is spreading among people. Of seven cases, six people recovered and one person from China died. In February, health officials in China reported an eighth case in a woman whose current condition is unknown.

What’s more, four of the reported human cases — including a U.S. case from Colorado and two workers linked to the Spanish mink farm — were in people who didn’t have any respiratory symptoms. That leaves open the possibility that those people were not truly infected. Instead, tests may have picked up viral contamination, say in the nose, that the people breathed in while handling infected birds.

The impossibility of predicting which avian influenza viruses might make the jump to people and spark an outbreak is in part related to knowledge gaps. These bird pathogens don’t typically easily infect or circulate among mammals including humans. And scientists don’t have a full grasp on how these viruses might need to change for human transmission to occur.

For now, it’s encouraging that so few people have gotten infected amid such a large outbreak among birds and other animals, says Marie Culhane, a food animal veterinarian at the University of Minnesota in St. Paul. Still, experts around the globe are diligently watching for any signs the virus may be evolving to spread more easily between people.

The good news is that flu drugs and vaccines that work against the virus already exist, Wille says. Compared with where the world was when the coronavirus behind the COVID-19 pandemic came on the scene, “we are already ahead of the game.”

How the virus would need to change to spread among people is a big unknown

This new iteration of bird flu is what’s called a highly pathogenic avian influenza, one that is particularly lethal for both domestic and wild birds. Aquatic birds such as ducks naturally carry avian flus with no or minor signs of infection. But when influenza viruses shuffle between poultry and waterfowl, variants with changes that make them lethal to birds can emerge and spread.

Avian viruses can be severe or even deadly for people. Since 2003, there have been 873 human cases of H5N1 infections reported to the World Health Organization. A little less than half of those people died. In February, an 11-year-old girl in Cambodia died after she developed severe pneumonia from an avian flu virus, the country’s first reported infection since 2014. Her father was also infected with the virus — a different variant than the one behind the widespread outbreak in birds —though he has not developed symptoms. It’s unknown how the two people were exposed.

Some of what scientists know about H5N1’s pandemic potential comes from controversial research on ferrets done more than a decade ago (SN: 6/21/13). Experiments showed that some changes to proteins that help the virus break into cells and make more copies of itself could help the virus travel through the air to infect ferrets, a common laboratory stand-in for humans in influenza research.    

While researchers know these mutations are important in lab settings, it’s still unclear how crucial those changes are in the real world, says Jonathan Runstadler, a disease ecologist and virologist at Tufts University’s Cummings School of Veterinary Medicine in North Grafton, Mass.

Viruses change constantly, but not all genetic tweaks work together. A change may help one version of the virus transmit better, while also hurting another variant and making it less likely to spread.

“We’re not sure how critical or how big a difference or how much to worry about those mutations when they happen in the wild,” Runstadler says. “Or when they happen five years down the road when there are other changes in the virus’s genetic background that are impacting those [original] mutations.”

That doesn’t stop researchers from trying to pinpoint specific changes. Runstadler and his team look for viruses in nature that have jumped into new animals and work backward to figure out which mutations were crucial. And virologist Louise Moncla says her lab is trying to develop ways to scan entire genetic blueprints of viruses from past outbreaks to look for signatures of a virus that can jump between different animal species.

“There’s a ton that we don’t know about avian influenza viruses and host switching,” says Moncla, of the University of Pennsylvania.

Genetic analyses of H5N1 circulating on the mink farm in Spain, for instance, revealed a change known to help the virus infect mice and mammalian cells grown in the lab. Such a change could make it easier for the virus to spread among mammals, including people. There could have been mink-to-mink transmission on the farm, the researchers concluded, but it remains unclear how much of a role that specific mutation played in the outbreak. 

It’s a numbers game for when influenza viruses with the ability to transmit among mammals might make the jump from birds, Runstadler says. “The more chances you give the virus to spill over and adapt, the higher the risk will be that one of those adaptations will be effective [at helping the virus spread among other animals] or take root and be a real problem.”

The ongoing outbreak is still a big problem for birds

Irrespective of our inability to forecast human’s future with H5N1, it’s clear that many species of birds — and some other animals that eat them — are dying now. And more species of birds are dying in this outbreak than previous ones, Culhane and Wille say.

“We have seen huge outbreaks in raptors and seabirds, which were never really affected before,” Wille says. It’s possible that genetic changes have helped the virus to spread more efficiently among birds than previous versions of H5N1, but that’s unknown. “There are a number of studies underway to try and figure it out,” Wille says.

Kooiker Teun de Vaal of the Netherlands uses a cotton swab to test one of his ducks.
Researchers and farmers around the world monitor cases of bird flu on commercial and backyard farms to keep track of deadly avian flus that could jeopardize flocks. Here, Kooiker Teun de Vaal of the Netherlands uses a cotton swab to test one of his ducks on January 12, 2022.SANDER KONING/ANP/AFP via Getty Images

Historically, these deadly avian flus have not been a persistent problem in the Americas, Moncla says. Sporadic outbreaks of H5N1 variants are typically limited to places such as parts of Asia, where the virus has circulated in birds since its emergence in the late 1990s, and northern Africa.

North America’s last big avian flu outbreak was in 2015, when experts detected more than 200 cases of a different bird flu virus in commercial and backyard poultry across the United States. The poultry industry culled more than 45 million birds to stop that virus’s spread, Culhane says. “But it didn’t go away from the rest of the world.”

The latest version of H5N1 arrived on North American shores from Europe in late 2021, first popping up in Canada in Newfoundland and Labrador. From there, it spread south into the United States, where so far tens of millions of domestic poultry have been culled to prevent transmission on farms where the virus has been detected. By December 2022, the virus had made it to South America. In Peru, tens of thousands of pelicans and more than 700 sea lions have died since mid-January.

It’s important to understand exactly how nonbird animals are getting exposed, Culhane says. Highly pathogenic avian influenzas infect every organ of a bird’s body. So, a fox chowing down on an infected bird is exposing its own mouth, nose and stomach to a lot of virus as it eats its meal.  

For now, experts are keeping an eye on infected animals to raise the alarm early if H5N1 starts transmitting among mammals.

“I do think that the mink outbreak, and then the sea lion outbreak, is a wake-up call,” Moncla says. “We should be doing our very best to implement all the science we can to try and understand what’s happening with these viruses so that if the situation does change, we are better prepared.”

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *


Scientists Have Now Recorded Brain Waves From Freely Moving Octopuses





For the first time, scientists have recorded brain waves from freely moving octopuses. The data reveal some unexpected patterns, though it’s too early to know how octopus brains control the animals’ behavior, researchers report February 23 in Current Biology.

“Historically, it’s been so hard to do any recordings from octopuses, even if they’re sedated,” says neuroscientist Robyn Crook of San Francisco State University, who was not involved in the study. “Even when their arms are not moving, their whole body is very pliable,” making attaching recording equipment tricky.

Octopuses also tend to be feisty and clever. That means they don’t usually put up with the uncomfortable equipment typically used to record brain waves in animals, says neuroethologist Tamar Gutnick of the University of Naples Federico II in Italy. 

To work around these obstacles, Gutnick and colleagues adapted portable data loggers typically used on birds, and surgically inserted the devices into three octopuses. The researchers also placed recording electrodes inside areas of the octopus brain that deal with learning and memory. The team then recorded the octopuses for 12 hours while the cephalopods went about their daily lives — sleeping, swimming and self-grooming — in tanks.

Some brain wave patterns emerged across all three octopuses in the 12-hour period. For instance, some waves resembled activity in the  human hippocampus, which plays a crucial role in memory consolidation. Other brain waves were similar to those controlling sleep-wake cycles in other animals.

The researchers also recorded some brain waves that they say have never been seen before in any animal. The waves were unusually slow, cycling just two per second, or 2 hertz. They were also unusually strong, suggesting a high level of synchronization between neurons. Sometimes just one electrode picked up the weird waves; other times, they showed up on electrodes placed far apart,

Observing these patterns is exciting, but it’s too early to tell whether they’re tied to a specific behavior or type of cognition, Gutnick says. Experiments with repetitive tasks are necessary to fully understand how these brain areas are activated in octopuses during learning.

The new research is exciting in that it provides a technique for future researchers to observe brain activity in awake and naturally behaving octopuses, Crook says. It could be used to explore brain activity behind the animals’ color-changing abilities, spectacular vision, sleep patterns and adept arm control (SN: 1/29/16; SN: 3/25/21).

Octopuses are highly intelligent, so by studying the creatures “you can get ideas about what is important for intelligence,” Gutnick says. “The problems that the animals face are the same problems, but the solutions that they find are sometimes similar and sometimes different and all of these comparisons teach us something.”

Continue Reading


Static Electricity Helps Parasitic Nematodes Glom Onto Victims





LAS VEGAS — Some species of parasitic roundworms can catapult themselves high into the air to latch onto fruit flies and other insects. Experiments now reveal that leaping Steinernema carpocapsae nematodes take advantage of a secret weapon that makes them particularly effective in their pursuit of victims: static electricity.

Flying insects build up electric charge as they move through the air (SN: 10/31/22). It’s the same effect that causes electricity to collect on droplets of mist in clouds, and ultimately leads to lightning.

Individual insects can accumulate charges of 100 volts or so, biomechanics researcher Víctor Ortega Jiménez of the University of Maine in Orono reported March 6 at the American Physical Society meeting. When nematodes leap, the charge on a passing insect attracts the parasites like lint to a staticky sweater.

An insect in the top middle of the frame with a rainbow of colors surrounding it. The arrows show the direction the nematodes move; colors indicate relative speed with blue for slower and red for faster. 
As an insect moves, it builds up charges that create surrounding electric fields. Those charges create static electricity that pulls parasitic nematodes toward the insect, new research reveals. The arrows show the direction the nematodes move; colors indicate relative speed with blue for slower and red for faster.Víctor M. Ortega Jiménez

To test the effect of electric charge, Ortega Jiménez and colleagues mounted dead fruit flies on wires and placed them near a surface covered in nematodes. With no charge on a fly, only nematodes that happened to jump in the direction of the insect landed on target, as expected. When researchers applied an electric charge to a suspended fruit fly, even nematodes that initially headed in the wrong direction were caught up in the electric field and pulled onto the fly.

Ortega Jiménez has also studied electric force effects on spider webs. When charged insects neared a web, “the silk is attracted directly to the insects,” he says. That made him wonder whether leaping nematodes rely on those forces as well.

Researchers have long considered the effect of fluids and air flow on insects and other tiny creatures. But only recently have they added electricity to the mix, Ortega Jiménez says. “We need to know how animals actually are dealing with these forces at this scale.”

Some teeny-tiny parasitic roundworms called nematodes have an unerring ability to leap high into the air to land on fruit flies and other living prey. It turns out that the prey unwittingly give the nematodes a hand, new research shows. By simply moving, a fly builds up an electric charge. Like static electric cling, that charge can pull a nematode in. In this experiment, researchers applied an electric charge to a pinned-in-place fly. A speck of a nematode (left) cartwheeled into the air and then headed straight for the fly.

Continue Reading


This Fish Could Expand What We Know About One Odd Deep-Sea Ecosystem





Off the Pacific coast of Costa Rica sits a deep-sea chimera of an ecosystem. Jacó Scar is a methane seep, where the gas escapes from sediment into the seawater, but the seep isn’t cold like the others found before it. Instead, geochemical activity gives the Scar lukewarm water that enables organisms from both traditionally colder seeps and scalding hot hydrothermal vents to call it home.

One resident of the Scar is a newly identified species of small, purplish fish called an eelpout, described for the first time on January 19 in Zootaxa. This fish is the first vertebrate species found at the Scar and could help scientists understand how the unique ecosystem developed. 

Jacó Scar was discovered during exploration of a known field of methane seeps off the Costa Rican coast and named for the nearby town of Jacó. It is “a really diverse place” with many different organisms living in various microhabitats, says Lisa Levin, a marine ecologist at Scripps Institution of Oceanography in La Jolla, Calif.

Levin was on one of the first expeditions to the Scar but wasn’t involved in the new study. She recalls the team finding and collecting one of the fish during this early excursion, but the researchers didn’t recognize it as a new species.

Several more specimens were snagged during later submersible dives. Charlotte Seid, an invertebrate biologist at Scripps who is working on a checklist of organisms found at the Costa Rican seeps, brought the fishy finds to ichthyologist Ben Frable, also of Scripps, for formal identification.

Frable says he knew the fish was an eelpout. They look exactly as one would expect based on their name: like frowning eels, though they aren’t true eels. But he was having trouble determining what type. Eelpouts are a diverse family of fish comprised of nearly 300 species that can be found all over the world at various ocean depths.

Because the physical differences between species can be subtle, they are “kind of a tricky group” to identify, Frable says. “I just was not really getting anywhere.” So the team turned to eelpout expert Peter Rask Møller of the Natural History Museum of Denmark in Copenhagen, sending him X-rays, pictures and eventually one of the fish specimens.

Møller narrowed the enigmatic eelpout to the genus Pyrolycus, meaning “fire wolf.” Turns out, the tool, called a dichotomous key, that Frable had been using to identify the specimens was outdated, made before Pyrolycus was described in 2002. “I did not know that genus existed,” Frable says.

Because the other two known Pyrolycus species live far away in the western Pacific and have different physical features, the team dubbed the mystery fish P. jaco — a new species.

The first eelpouts most likely evolved in cold waters, Frable says, but many have since made their home in the scalding waters of hydrothermal vents. Of the 24 known fish species that live only at hydrothermal vents, “13 of them are eelpouts,” Frable says.

A Pyrolycus jaco specimen is shown freshly collected (top), preserved (middle) and in X-rays superimposed over the fresh image (bottom), all on a black background.
A Pyrolycus jaco specimen is shown freshly collected (top), preserved (middle) and in X-rays superimposed over the fresh image (bottom).B. Frable and C. Seid/Scripps Institution of Oceanography

The new finding raises questions about how the known Pyrolycus species came to live so far apart. It may have to do with the fact that methane seeps are more common than previously thought on the ocean floor, and if some are lukewarm like Jacó Scar, the new species could have used them as refuges while moving east.

And by comparing P. jaco to its vent-living relatives, researchers may be able to figure out how it adapted to live in the tepid waters of the Scar — which may provide clues to how other species living there did too.

The eelpout is part of a medley of other species that form Jacó Scar’s composite ecosystem, along with, for example, clams typically found at cold seeps and bacteria found at hydrothermal vents. Jacó Scar is a “mixing bowl” of species found in other parts of the world, Seid says. Figuring out how this eclectic bunch interacts “is part of the fun.”

Continue Reading